
George Lesica - November 2020

Commander
Command Line Interface Functional Testing

Anonymous

“Software and cathedrals are much the
same: first we build them, then we pray.”

Unit Testing

How it works

• Break software into self-contained “units”

• Test each one in isolation

• Units can be functions, classes, methods, or whatever makes sense

Strengths

• Write tests as you write code

• Mapping from failure to bug is usually easy

• Testing requires little domain knowledge

Weaknesses

• White box

• Bugs occur at interfaces

• Users don’t use one unit at a time

Functional Testing

How it works

• Run the program, see if it works

• Test from the user’s perspective

• Verify functionality, not implementation

Strengths and weaknesses

• More “practical”

• Require domain knowledge

• Verify the user experience

• Take longer to run

Boris Beizer

“More than the act of testing, the act of
designing tests is one of the best bug
preventers known.”

Commander

Introduction

• https://github.com/commander-cli/commander

• Written in Go

• Provide input, assert output

• Allows “gold file” testing

• Tests written in YAML or JSON

https://github.com/commander-cli/commander

Example 1

tests:

 hello world:

 command: python -c “print(‘hello world’)”

 stdout: hello world

Run Example 1

➜ ./commander test example-1.yaml

Starting test file example-1.yaml...

✓ [local] hello world

Duration: 0.058s

Count: 1, Failed: 0, Skipped: 0

More Resources

• https://github.com/commander-cli/commander

• https://github.com/TravisWheelerLab/InstitutionalMemory/wiki/Functional-
Testing-with-Commander

• https://github.com/glesica/commander-tutorial

https://github.com/commander-cli/commander
https://github.com/TravisWheelerLab/InstitutionalMemory/wiki/Functional-Testing-with-Commander
https://github.com/TravisWheelerLab/InstitutionalMemory/wiki/Functional-Testing-with-Commander
https://github.com/glesica/commander-tutorial

