Commander

George Lesica - November 2020



“Software and cathedrals are much the
same: first we build them, then we pray.”

Anonymous



Unit Testing



How 1t works

e Break software into self-contained “units”

e Jest each one In Isolation

 Units can be functions, classes, methods, or whatever makes sense



Strengths

* Write tests as you write code
 Mapping from failure to bug is usually easy

* Jesting requires little domain knowledge



Weaknesses

* White box
 Bugs occur at interfaces

e Users don’t use one unit at a time



Functional Testing



How 1t works

 Run the program, see if it works
e Jest from the user’s perspective

* \erify functionality, not implementation



Strengths and weaknesses

 More “practical”
 Require domain knowledge
* Verify the user experience

 Take longer to run



“More than the act of testing, the act of
designing tests Is one of the best bug
preventers known.”

Boris Belzer



Commander



Introduction

» https://github.com/commander-cli/commander

e Written in Go
 Provide input, assert output

* Allows “gold file” testing

e Tests written in YAML or JSON


https://github.com/commander-cli/commander

Example 1

tests:
hello world:
command: python -c “print(‘hello world’)”

stdout: hello world



Run Example 1

-» ,/commander test example-1.yaml

Starting test file example-1.yaml...
v [local] hello world

Duration: 0.058s
Count: 1, Failed: 0, Skipped: 0



More Resources

» https://github.com/commander-cli/commander

o https://qgithub.com/TravisWheelerLab/InstitutionalMemory/wiki/Functional-
Testing-with-Commander

» https://qgithub.com/glesica/commander-tutorial



https://github.com/commander-cli/commander
https://github.com/TravisWheelerLab/InstitutionalMemory/wiki/Functional-Testing-with-Commander
https://github.com/TravisWheelerLab/InstitutionalMemory/wiki/Functional-Testing-with-Commander
https://github.com/glesica/commander-tutorial

