
Releasing Software
George Lesica - Wheeler Lab

Software is meant to
be used by people to
do things.

Seriously, though.

Unfortunately,
releasing software is
hard, and boring.

But it’s fun when
people use our
software!

Challenges
Or, what’s so hard about this?

Discovery

Installation

Usage

Development

Discovery

We put our software
where our users are.

Our software...

Methods and Tools

● Publishing
○ Publish tools even without research

○ Discuss tools in academic and non-academic publications

● GitHub
○ Repo descriptions and topics

○ Explanatory READMEs

● Evangelize
○ Look for use cases

○ Seek out collaborations

But just who are these
“user” people?

Think in archetypes.

Archetypes

A microbiologist who writes code, but is self-taught and unfamiliar with modern

programming languages like Rust.

A software engineer working in bioinformatics who has spent significant time

writing Python code, but primarily in a non-academic setting.

A time-constrained CS graduate student who is conversant in basic genetics, but

lacks a deep understanding of microbiology.

A systems administrator who is asked to install and maintain software for a cluster,

but knows little about biology and almost never writes code beyond shell scripts.

Decide who to focus
on, and provide them
with reasonable
solutions.

Installation

Installation should be
easy, but also reliable.

Different Software: Different Principles

Libraries

● Integrate into package ecosystems
○ Don’t do your own thing, even if the

dominant thing is terrible

○ Decide what to support and do it well

● Use semantic versions
○ Automated dependency resolution tools

are a thing, play nice with them

○ Release often, don’t let bug fixes wallow on

the main branch, unreleased

Applications

● Integrate into package ecosystems to the

extent that it serves users
○ No need for a Mac package if the software

is intended for clusters

○ No need for an .deb or .rpm package if the

software is targeted at technical people

○ Consider static linking to split the

difference

● Clearly enumerate dependencies and

supported versions

● Provide release notes

Specific Recommendations

Python

Libraries

● Publish to PyPI
○ Flit (preferred)

○ Poetry

● Considering publishing to Conda

Applications

● Minimize third-party dependencies (but

don’t go overboard)

● Consider publishing to PyPI

● Consider publishing to Conda

● Consider publish Docker images

● Linux packages (.deb and .rpm) are a lot of

work

Rust

Libraries

● Publish a Crate

● Go easy on the third-party dependencies

Applications

● Consider static linking

● Consider publishing a Crate

● Consider publishing to Conda

C / C++

Libraries

● Apparently, you just want to watch the

world burn... nice

● Use CMake unless you can’t for some

reason

● Use Autotools if you can’t use CMake

● Remember that the GCC on your machine

isn’t the only compiler in existence

Applications

● Minimize build dependencies

● Use CMake

● Consider publishing to Conda

● Consider publishing a Docker image

● Remember that the GCC on your machine

isn’t the only compiler in existence

Don’t try to do
everything for
everyone, let the user
help!

Usage

Using your software
should be easy for your
target users, and
possible for everyone
else.

High-level Suggestions

Libraries

● Provide API documentation

● Provide meaningful examples

● Take advantage of ecosystem tools

● API documentation should cover “what”

and “why”, but NOT “how”
○ No one cares (let’s be honest)

○ If they do care, they can read the code

● Design APIs to be consistent
○ Naming

○ Parameter order

○ Types

Applications

● Always provide “--help”

● Man pages are great, but these days the

web is probably better

● Provide meaningful examples

● Thoroughly describe input and output

formats
○ For standard formats like FASTA, explain

what the file should (or will) contain

Specific Recommendations

Python

Libraries

● Provide docstrings

● Use Read The Docs

Applications

● Use Read The Docs

● Provide examples in your documentation

Rust

Libraries

● Provide doc comments

● Use rustdoc and docs.rs

Applications

● Use github.io to host a simple web site with

explanation and examples

C / C++

Libraries

● Provide doc comments

● Use Doxygen or something similar for API

docs

● Consider Read The Docs for hosting

● Use github.io otherwise

Applications

● Use github.io to host a simple web site with

explanation and examples

Development

At the end of the day, a
developer is just a
particular kind of user.

General Recommendations

Provide an automated test suite - not every developer will be familiar with every

part of your code, test suites provide confidence and peace of mind.

API documentation and code comments can provide important context for new

developers.

Use a formatter and linter to enforce code style.

Use good variable, function, and class names.

Set up continuous integration to run your quality checks (tests, linter, formatter).

API Documentation

Bad

Calculate the score for a row.

def calculate_score(row, target):

A single sequence.

class Sequence:

Good

Calculate the score for the given

row based on the CrossMatch score

algorithm.

def calculate_score(row, target)

A single sequence that uses a

particular alphabet and encodes

blank (unknown) nucleotides.

class Sequence:

Code Comments

Bad

Iterate through positions and add

up all values greater than q.

for i in positions:

 if i > q:

 total += i

Reset the counter

row_index = 0

Good

Sum positions that are above the

critical threshold (Smith, 2019).

for i in positions:

 if i > q:

 total += i

Start over from the top of the

column

row_index = 0

Style Considerations

● Names
○ calculate_offset

○ calc_offset

○ calculateOffset

○ calcOffset

● Order
○ find_match(values, regex)

○ find_match(regex, values)

○ values.find_match(regex)

○ regex.find_match(values)

● Control Flow
○ for d in data:

○ for i in range(len(data)):

○ [f(d) for d in data]

○ map(f, data)

● Paradigm
○ Matrix.apply(f)

○ apply(M, f)

○ sorted(values)

○ values.sort()

Names

Bad

value = sequence_scores[i]

for i in range(len(scores)):

file = open(...)

columns = len(matrix)

def process_data(...)

Good

score = sequence_scores[i]

for score_index in range(len(scores)):

sequence_file = open(...)

column_count = len(matrix)

literally anything else

Specific Recommendations

Python

● Tests - pytest

● Formatter - black

● Linter - flake8 or pylint

● Type checking - mypy

Rust

The compiler handles most checks and the Cargo tool includes a test runner and

code formatter.

C / C++

● Tests - ctest (built into CMake)

● Formatter - clang-format

● Linter - clang-tidy

Wrapping Up

Releasing software is a
balancing act.

Doing it well is
worthwhile for us,
users, and developers.

Questions?

